Как классифицируются насосы по принципу действия

Классификация насосов

как классифицируются насосы по принципу действия

Насос – это агрегат, предназначенный для перемещения различных веществ с разными объемами, имеющих разный состав и особенности. Многообразие разновидностей насосного оборудования требует четкой классификации, для того чтобы потребители могли быстро подобрать необходимую модель в соответствии с собственными нуждами.

Насосы подразделяются на типы с учетом следующих критериев:

  • области использования;
  • принцип действия;
  • конструктивные особенности;
  • назначения и места установки.

При этом определенная модель может характеризоваться по каждому виду классификации.

Область использования 

Бытовые – предназначены для:

  • создания давления в автономных системах отопления частных жилых домов;
  • подачи воды при отсутствии централизованных источников снабжения;
  • перекачивания стоков в системах канализации при невозможности обеспечить нужные уклоны в трубопроводах и т.д.

Производительность бытовых насосов значительно более низкая по сравнению с промышленными.

Промышленные – используются:

  • для снабжения водой, необходимой при работе промышленных установок;
  • в водоочистных сооружениях и системах охлаждения;
  • в системах снабжения топливом и смазочными материалами;
  • для промывки узлов механизмов и оборудования;
  • для транспортировки нефтепродуктов;
  • в системах водоснабжения котельных установок;
  • в химической промышленности для перекачивания агрессивных жидкостей и т.п.

Мощность промышленных типов имеет большое значение для обеспечения рентабельности предприятий, в том числе работающих в сфере услуг, поэтому подбирая насосы, не экономят на их производительности и стоимости.

Принцип действия

По этому критерию оборудование можно разделить на насосы объемного принципа действия и динамические.

Принцип работы объемных насосов заключается в изменении различными способами объема внутренней камеры, что создает давление, побуждающее к движению перекачиваемые жидкости. их особенность – самовсасывание новых объемов перекачиваемого вещества за счет создания разрежения в камере после удаления из нее ранее поступившего. К ним относятся следующие виды:

  • Поршневые насосы – главным их рабочим органом является поршень, создающий давление в камере цилиндрической формы за счет возвратно-поступательного движения. Впуск и выпуск перекачиваемой субстанции обеспечивают всасывающий, а также нагнетательный клапаны, конструкция которых зависит от области применения. Насосы могут быть предназначены для вертикальной или горизонтальной установки, одноцилиндровыми или оснащенными несколькими цилиндрами, однократного или многократного действия. Мощность зависит от объема цилиндров и скорости движения поршня.
  • Роторные подразделяются на зубчатые, шиберные, шестеренные, лабиринтные, винтовые, импеллерные, перистальтические и другие. Несмотря на различия в устройстве все они функционируют по одному принципу – жидкость или газ перекачивается через фиксированный корпус с помощью перемещения ротора, кулачков, винтов, лопастей или других движущихся деталей. Импеллерные насосы несколько отличаются от других видов – передвижение жидкости в них осуществляется с помощью вытеснения эластичными лопастями вращающегося колеса, заключенного в эксцентрическом корпусе. Конструкция этого вида намного проще поршневых в связи с отсутствием клапанов, поэтому они имеют большую популярность среди пользователей.
  • Вакуумные насосы в полной мере можно назвать самовсасывающими. Большинство из них можно отнести к роторным. Основное условие для их нормальной работы – обеспечение полной герметичности между движущимися деталями и корпусом.
  • Перистальтические представляют собой устройство, состоящее из гибкого рукава, изготовленного из эластомера с размещенным на нем валом с роликами. Вал при вращении пережимает рукав с помощью роликов, обеспечивая проталкивание жидкости.

Функционирование динамических насосов осуществляется за счет сил движения при отсутствии самовсасывания и характеризуется уравновешенностью работы, равномерностью подачи перекачиваемой жидкости и исключением вибрации. К ним относятся:

  • Центробежные – оснащены рабочим колесом, расположенным внутри корпуса. Колесо при вращении повышает кинетическую энергию водотока, за счет которой повышается кинетическое, и вслед за ним потенциальное давление жидкости, что побуждает ее к перемещению.
  • К струйным насосам можно отнести эрлифты и гидроэлеваторы. Эрлифты работают в комплекте с компрессором, насыщающим перекачиваемую жидкость воздушными пузырьками, которая передвигается благодаря их подъемной силе. Действие гидроэлеваторов осуществляется за счет кинетической энергии перекачиваемой субстанции.   
  • Вихревые насосы по принципу работы схожи с центробежными. Только здесь ускорение движения водотока побуждается за счет завихрений жидкости, которые создаются посредством эксцентричности корпуса, что приводит к периодическому изменению зазоров между лопастями и кожухом. Они имеют малые размеры и массу, что позволяет легко их перемещать. Единственный недостаток этого типа насосов – невысокий КПД – менее 50 %.

Конструктивные особенности 

По конструктивным особенностям насосы можно отличить невооруженным глазом, особенно в случаях, когда не получается его установить на запланированное место из-за несовместимости соединений и неподходящих размеров.

Кроме того, даже у одной разновидности насосов могут быть отличия во внутреннем устройстве. Например, все роторные насосы оснащены роторами, но рабочие элементы – кулачки, лопатки, винты и т.д. – у них могут отличаться.

Еще одно явное отличие разных видов насосов по конструкции – горизонтальное или вертикальное исполнение.

Назначение и место установки

Широко используемые насосы, служащие для подачи воды из скважин, резервуаров и колодцев, подразделяются на поверхностные и погружные.

Поверхностные насосы

Подача воды осуществляется за счет всасывания через гибкий шланг или трубу, которые опускают в скважину. Они могут оборудоваться системой автоматики, обеспечивающей поступление воды по сигналу датчика, срабатывающего при включении кранов в системе. Такая система называется насосной станцией.

Погружные насосы

Колодезные опускают непосредственно в саму воду. Они оборудованы поплавками, прекращающими работу насоса при отсутствии воды.

Назначение дренажных насосов – откачка воды из затопленных подземных помещений, дренажных систем, водоемов, бассейнов, систем автономной канализации. Откачиваемая вода чаще всего бывает загрязненной, поэтому конструкция оборудования рассчитана на минимальный контакт с водой трущихся деталей.

Насосы циркуляционные используются в автономных системах отопления для создания давления и ускорения циркуляции теплоносителя. Они отличаются небольшими размерами, бесшумностью работы, легкой встраиваемостью непосредственно в трубопроводы системы отопления. При их подборе следует пользоваться простым правилом: оборудование должно в течение часа пропустить через себя 3-кратный объем теплоносителя. 

Назначение фекальных насосов – перекачивание загрязненных и сточных вод, включая хозяйственно-бытовые канализационные стоки, содержащие большое количество крупных примесей.

Такие сточные воды удаляются из систем канализации жилых домов, моечных ресторанов и кафе, прачечных и банных заведений, гостиниц и т.д.

Обычно хозяйственно-бытовые стоки содержат крупные частицы, которые могут забивать трубы канализационных систем, для предотвращения этого в конструкции предусматривается механизм, измельчающий крупные частицы до нужной фракции.

Источник: http://kachayvodu.ru/blog/klassifikatsiya-nasosov

Шестеренчатый насос: устройство и сфера применения

как классифицируются насосы по принципу действия

Существует довольно большое количество самых различных насосов, которые классифицируются по принципу действия. Шестеренчатый или шестеренный насос относится к объемному типу оборудования.

Большое распространение этого типа конструкции связано с тем, что он применим для перекачивания вязкой жидкости. Примером можно назвать нефтяные продукты, масла, топливо и многие другие вязкие продукты.

Следует учитывать тот момент, что выделяют два основных типа шестеренчатых насосов: с внешним и внутренним зацеплением. Рассмотрим все особенности шестеренчатых насосов подробнее.

Конструкция шестеренчатых насосов
Принцип работы насоса с внешним зацеплением
Используемые материалы
Конструкция с внутренним зацеплением

Шестеренчатые насосы с внешним зацеплением: каковы особенности конструкции

Различные станки и другое обрабатывающее оборудование может иметь систему смазки, которая отвечает за подачу масла в зону трущихся элементов или СОЖ в зону резания.

Для обеспечения достаточного давления при условии высокой вязкости жидкости устанавливаются именно шестеренчатые насосы. Эта конструкция имеет рабочий орган в виде шестерен, которые постоянно находятся в зацеплении.

Стоит учитывать, что шестерни могут быть расположены в один или два ряда. При этом шестерни могут иметь самую различную форму:

  1. Цилиндрическую с прямым расположением зуба.
  2. Цилиндрическую с косым расположение зуба.
  3. Шестерни в виде шеврона.

Следует учитывать тот момент, что именно шевронные и цилиндрические шестерни с косым зубом имеют более плавный ход. Эти же шестерни позволяют существенно повысить показатель производительности оборудования.

Рассматриваемый тип насосов может иметь самый различный показатель производительности. Большинство моделей проводят перекачку жидкости на скорости 1 750 – 3 450 об/мин.

Конструкция имеет плавную работу за счет того, что между рабочими элементами нет зазоров. Примером можно назвать то, что вал фиксируется с двух сторон. Некоторые модели могут выдерживать давление около 200 бар. Именно эта причина определяет возможность применения насосов в различном оборудовании, в том числе металлообрабатывающих станках.

Особенности данного насоса проста и при этом надежная. Конструкция шестеренчатых насосов с внешним зацеплением имеет следующие элементы:

  1. Ведомая и ведущая шестерни.
  2. Вал, который является одновременно элементом крепления и привода.
  3. Система утопления вала, которая обеспечивает надежную фиксацию.
  4. Задний и передний подшипники, которые называют еще втулками.

Вышеприведенная информация определяет то, что конструкция достаточно проста, а значит и надежная в эксплуатации.

Принцип работы насоса с внешним зацеплением

Принцип работы рассматриваемой конструкции достаточно прост. Основных два элемента, представленные ведомой и ведущей шестерней, передают и принимают вращение. Ведущая шестерня при этом получает вращение от привода, а ведомая от ведущей. Расположены они на противоположных сторонах, находятся постоянно в зацеплении.

К особенностям принципа работы данного насоса можно отнести нижеприведенные моменты:

  1. При зацеплении шестерни создают разряжение со всасывающей стороны конструкции. Жидкость подается через специальное отверстие в полость, которая образуется вокруг шестерен, после чего захватывается при помощи зубьев шестерен.
  2. Перемещение масла проводится за счет полости, которая образуется между зубьями. А вот между самими шестернями перекачивание среды не приводится.
  3. За счет зацепления зубьев вязкая жидкость выталкивается в напорный патрубок. При этом отметим, что на протяжении всего периода эксплуатации металл не подвергается воздействию коррозии.

Кроме этого не стоит забывать о том, что при зацеплении зубья контактируют и под воздействием нагрузки может происходить износ, но масло, которое перекачивается, существенно снижает показатель возникающего трения.

Используемые материалы

Не сложно догадаться, что от типа материала, из которого производится конструкция, зависят ее основные эксплуатационные качества. При изготовлении могут использоваться самые различные материалы, в основном сталь и чугун.

Выделяют следующие разновидности материалов:

  1. Проточная часть может изготавливается при использовании серого или ковкого чугуна. Кроме этого достаточно большую популярность получила углеродистая или нержавеющую сталь. Есть модели насосов, которые изготавливаются при использовании композиционных материалов, которые обладают весьма высокими эксплуатационными качествами.
  2. Шестерни являются основным элементом конструкции, которые изготавливают из дуплекса, композитов, углеродистой или нержавеющей стали. А вот чугун в данном случае не применим, так как не имеет высокую прочность и устойчивость к воздействию ударной нагрузки.
  3. Упорные втулки выделим в отдельную группу. При их изготовлении может использоваться бронза, графит и карбид кремния. Эти материалы более устойчивы как к воздействию повышенной влажности, так и трению.

Что касается области применения, то список весьма большой:

  1. Гидравлика.
  2. Энергетика.
  3. Нефтяная и газовая промышленность.
  4. Пищевая промышленность и машиностроение.

Область применения определяется особенностью конструкции и видом используемых материалов при изготовлении основных элементов.

Конструкция с внутренним зацеплением

Особенности данной конструкции заключаются в том, что перекачивание масла или другой жидкости происходит за счет ротора и ведомого колеса. Работает насос по принципу «шестерня в шестерне». В данной конструкции выделяют следующие основные элементы:

  1. Ротор.
  2. Ведомую шестерню.
  3. Элементы, отвечающие за утопление вала в корпусе.
  4. Всасывающий и нагнетающий патрубки.
  5. Различные предохранительные патрубки.

Принцип действия насоса заключается в нижеприведенных моментах:

  1. Вязкая жидкость поступает через всасывающий патрубок в полость, которая образуется между ротором и ведомой шестерней.
  2. Жидкость проходить через конструкцию насоса за счет того, что она попадает в пространство, образующееся зубьями.
  3. На момент вытеснения жидкости из конструкции проточная часть полностью ей заполняется. Полностью запертые уплотнительные карманы позволяют обеспечить весьма большое давление и снижают показатель потерь.

Как и предыдущая конструкция, рассматриваемая может производится при использовании тех же материалов. Разница заключается в нижеприведенных моментах:

  1. Ротор и ведомые шестерни могут изготавливаться из серого и ковкого чугуна. Это связано с более эффективным распределение нагрузки между различными элементами конструкции.
  2. Упорные втулки могут изготавливаться из карбида кремния, бронзы или керамики, карбида вольфрама и многих других износостойких материалов.

Область применения данного типа насоса весьма велика. Примером можно назвать пищевую, нефтяную, газовую и химическую промышленности. Также встречается подобный насос в судостроении и судоходстве. Столь обширная область применения обуславливается тем, что более эффективное распределение нагрузки позволяет использовать материалы, обладающие меньшей прочностью, но большей коррозионной и химической стойкостью.

Источник: https://nasoskm.ru/promyishlennyie-nasosyi/shesterenchatyiy-nasos

Виды пожарных насосов и их характеристики

как классифицируются насосы по принципу действия
титульный лист

Насосы – это машины, преобразующие подводящую энергию в механическую энергию перекачиваемой жидкости или газа. В пожарной технике применяют насосы различного вида. Наибольшее применение находят механические насосы, в которых механическая энергия твердого тела, жидкости или газа преобразуются в механическую энергию жидкости.

По принципу действия насосы классифицируются в зависимости от природы преобладающих сил, под действием которых происходит перемещение перекачиваемой среды в насосе. Таких сил бывает три: массовая сила (инерция), жидкостное трение (вязкость) и сила поверхностного давления.

Насосы, в которых преобладает действие массовых сил и жидкостное трение (или то и другое), объединены в группу динамических насосов, а насосы, в которых преобладают силы поверхностного давления, составляют группу объемных насосов.

Механические насосы

1. Объемные: 1.1. Поршневые 1.2. Шестеренные 1.3. Пластинчатые (шиберные)

1.4. Водокольцевые

2. Динамические: 2.1. Смешанные: 2.1.1. Струйные: 2.1.1.1. Газоструйные 2.1.1.2. Водоструйные 2.1.2. Тангенциально-дисковые: 2.1.2.1. Вихревые 2.2. Жидкостного трения 2.3. Инерционные 2.3.1. Клапанно-вибрационные 2.3.2. Лопастные: 2.3.2.1. Осевые 2.3.2.2. Центробежно-осевые

2.3.2.3. Центробежные.

Общее устройство центробежных насосов

Основные элементы центробежного насоса: рабочие органы, корпус, опоры вала, уплотнение.

Рабочие органы – это рабочие колесо, подводы и отводы.

Рабочие колесо насоса нормального давления выполнено из двух дисков – ведущего и покрывающего. Между дисками расположены лопасти, загнутые в сторону, противоположную направлению вращения колеса. При работе насосов на рабочее колесо действует гидронамическая осевая сила, которая направлена по оси в сторону всасывающего патрубка и стремиться сместить колесо по оси, поэтому важным элементом в насосе является крепление рабочего колеса.

Осевая сила возникает за счет разности давлений на рабочее колесо, так как со стороны всасывающего патрубка на него действует меньшая сила давления, чем справа.

Для уменьшения осевых сил, действующих на рабочее колесо насоса, в ведущем диске высверлены отверстия, через которые жидкость перетекает из правой части в левую. При этом величина утечек равна утечкам через целевое уплотнение за колесом, КПД насоса снижается.

С износом элементов целевых уплотнений будет увеличиваться утечка жидкости, и уменьшаться КПД насоса.

В двух- и многоступенчатых насосах рабочие колеса на одном валу могут размещаться с противоположным направлением входа – это также компенсирует или снижает действие осевых сил. В современных пожарных насосах разгрузка вала и рабочего колеса от действия радиальных сил осуществляется путем изменения конструкций отводов. Отводы в большинстве пожарных насосов спирального типа.

ЭТО ИНТЕРЕСНО:  Как правильно красить краскопультом

Проверка водоподачи насоса по упрощенной схеме после ТО-2. Нвс.= 1-3,5 м п = 2650 — 2750 об/мин

д/б = 8,3 — 8,5 кг/м2

Назначение и общее устройство газоструйного вакуумного аппарата

ГВА предназначен для предварительного заполнения центробежного насоса водой. Применяется на пожарных автомобилях с карбюраторными двигателями.

Общее устройство:

Струйный вакуум-насос состоит из чугунного (СЧ 15-32) диффузора и стального (Х6СМ) сопла. Кроме фланца для крепления к распределительной камере на вакуум-насосе имеется фланец для присоединения трубопровода, который соединяет вакуумную камеру струйного насоса с полостью пожарного насоса через вакуумный клапан (кран). Газовая сирена состоит из распределителя выхлопных газов и резонатора, собранного из шести трубок различной длины.

При включении газоструйного вакуумного аппарата рычагом в насосном отсеке заслонка перекрывает выходное отверстие в распределительной коробке. Выхлопные газы проходят через сопло и создается разряжение в вакуумной камере, соединительном трубопроводе и в полости насоса при включенном вакуум-клапане насоса (рукоятка вакуум-клапана в положении «на себя»). Происходит подъем воды из водоема в насос. Время всасывания воды вакуумным аппаратом с высоты 7 метров – 35 40 секунд.

Забор воды из водоисточника

1. Поставить машину на водоисточник так, чтобы всасывающая линия была по возможности на 1 рукав, изгиб рукава был плавно направлен вниз и начинался непосредственно за всасывающим патрубком.

2. Для включения насоса при работающем двигателе необходимо, выжав сцепление, включить коробку отбора мощности в кабине водителя, а затем выключить сцепление рукояткой в насосном отсеке.

3. Погрузить всасывающую сетку в воду на глубину не менее 60 см, проследить, чтобы всасывающая сетка не касалась дна водоема.

4. Проверить перед забором воды закрытие всех задвижек и кранов на насосе и водопенных коммуникациях. 5

. Забрать воду из водоема включением вакуумной системы, для чего выполнить следующие работы: 5.1. Включить подсветку, повернуть на себя рукоятку вакуумного клапана; 5.2. Включить газоструйный вакуумный аппарат; 5.3. Увеличить частоту вращения рычагом «Газ»; 5.4.

При появлении воды в смотровом глазке вакуумного клапана закрыть его поворотом рукоятки; 5.5. Снизить рычагом «Газ» частоту вращения до холостого хода; 5.6. Плавно включить сцепление рычагом в насосном отсеке; 5.7. Выключить вакуумный аппарат; 5.8. Довести рычагом «Газ» напор на насосе (по манометру) до 30 м; 5.9.

Плавно открыть напорные задвижки, рычагом «Газ» установить необходимое давление на насосе;

5.10. Следить за показаниями приборов и возможными неисправностями;

6. При работе от пожарных водоемов особое внимание уделить контролю за уровнем воды в водоеме и положению всасывающей сетки;

7. Через каждый час работы насоса смазать сальники поворотом крышки масленки на2 3 оборота;

8. После подачи пены с использованием пеносмесителя промыть насос и коммуникации водой от цистерны или водоисточника;

9. Заправлять водой цистерну после пожара от используемого водоисточника рекомендуется только в том случае, если есть уверенность, что вода не имеет примесей;

После работы слить воду из насоса, закрыть задвижки, установить заглушки на патрубки.

Особенности использования пожарных насосов зимой

При использовании насосов зимой необходимо предусмотреть меры против замерзания воды в насосе и в напорных пожарных рукавах; • При температуре ниже 0 С включить систему отопления насосного отсека и выключить дополнительную систему охлаждения двигателя; • При кратковременном прекращении подачи воды не выключать привод насоса, держать малые обороты на насосе; • При работе насоса закрыть дверцу насосного отсека и следить за контрольными приборами через окно; • Для предотвращения замерзания воды в рукавах не перекрывать полностью стволы; • Разбирать рукавные линии от ствола к насосу, не прекращая подачу воды (в малом количестве); • При длительной остановке насоса слить из него воду; • Перед использованием насоса зимой после длительной стоянки провернуть заводной рукояткой вал двигателя и трансмиссию на насос, убедившись в том, что рабочее колесо не примерзло;

• Замерзшую в насосе, в соединениях рукавных линий воду отогревать горячей водой, паром (от специальной техники) или выхлопными газами от двигателя.

Применение и общее устройство пеносмесителя (типа ПС-5)

.

Пеносмеситель ПС-5 находит наибольшее применение на пожарных насосах ПН-40 и относится к предвключенным пеносмесителям. Максимальная подача пенообразователя 1,8 л/с.

Пеносмеситель ПС-5 состоит из:
двух корпусов, дозатора, сопла, пробки крана, шкалы, стрелки, маховика, обратного клапана, крышки клапана и ручки.

Пробка крана и дозатора уплотнены кольцами. Пеносмеситель присоединен корпусом крана к напорному коллектору, а корпусом – к крышке насоса посредством стакана и хомута.

Во время работы насоса с пеносмесителем напор на насосе должен быть 0,7 0,8 Мпа (7 8 кгс/см2) (в зависимости от длины и диаметра рукавных линий), подбор во всасывающей полости насоса – не более 0,25 Мпа (2,5 кгс/см2).

При эксплуатации пеносмесителя необходимо следить за его герметичностью, состоянием прокладок и резиновых колец, своевременно подтягивать крепежные детали. По окончании работы пеносмеситель необходимо промыть водой.

Проверка насоса на сухой вакуум

Для проверки насоса на сухой вакуум необходимо закрыть все краны и задвижки на насосе ,включить двигатель и создать разрежение в насосе при помощи вакуумной системы -0,75 -0,8 кгс/см. кв (560-630 мм.рт.ст.) за 15 сек.

Падение разрежения в насосе должно быть не более 0,13 кгс/см за 2.5 мин (визуально стрелка манометра остаётся на месте). Если насос не выдерживает испытания на вакуум ,необходимо произвести опрессовку насоса водой под давлением не более 6 кгс/см.кв.

Перед опрессовкой места соединений целесообразно смочить мыльным раствором.

Для измерения разрежения в насосе необходимо использоватьприставной вакуумметр с соединительной головкой или резьбой для установки на всасывающий патрубок насоса или вакуумметр ,установленный на насосе .В этом случае на всасывающий патрубок устанавливают заглушку .

Гидроэлеватор Г-600А

Предназначен для забора воды из открытых водоисточников, находящихся ниже уровня насоса до 20 м и удалены от пожарного автомобиля на расстояние до 100 м. Гидроэлеватор может забирать воду из водоисточников с небольшой глубиной (510см). Это свойство гидроэлеваторов позволяет использовать их для откачки воды ,пролитой при тушении пожара .

Гидроэлеватор Г-600А состоит из корпуса , на котором шпильками закреплены колено и диффузор со смесительной камерой .

Внутри корпуса установлен конический насадок , через который проходит поток рабочей жидкости , подаваемой от центробежного насоса ПА .Эжектируемая жидкость из открытого водоисточника через всасывающую сетку поступает в вакуумную камеру и диффузор.

Для соединения гидроэлеватора пожарными рукавами предусмотрены на колене гидроэлеватора и диффузора муфтовые соединительные головки.

Техническая характеристика гидроэлеватора Г-600А

Производительность при давлении в напорной линии перед гидроэлеватором 0.8 Мпа(8 кгс/см2) 600л/мин

Рабочий расход воды при давлении 0.8 МПа 550л/мин

Рабочее давление 0.21.2 МПа

Давление за гидроэлеватором при производительности 600 л/мин 0.17 МПа

Условный проход патрубка: Входного70мм

Выходного 80мм

Габариты ,не более: Длина680мм Ширина 290мм Высота 160мм

Масса , не более 5.6кг

Техника безопасности при работе с пожарными насосами ПОТРО 01-2002

Водителям (мотористам) при работе на пожаре запрещается без команды РТП и должностных лиц перемещать пожарные автомобили, мотопомпы, производить какие-либо перестановки автолестниц и автоподъемников, а также оставлять без надзора автомобили, мотопомпы и работающие насосы.

При ТО пожарных автомобилей на пожаре водитель обязан: не допускать резких перегибов на всасывающих рукавах, при этом всасывающая сетка должна быть полностью погружена в воду и находиться ниже уровня воды (не ниже 200 мм); смазывать при работе насоса через каждый час его подшипники и сальники (поворотом на 2 — 3 оборота крышек колпачковых масленок при открытых краниках); проверять, не подтекает ли вода через соединения и сальники насоса, выкидные вентили, а также из системы охлаждения двигателя (основной и дополнительной), а также масло из двигателя коробки передач и коробки отбора мощности и жидкость из узлов и систем гидравлических приводов; следить, чтобы температура воды в системе охлаждения двигателя была 80 — 95 град. С, а также за давлением масла в двигателе. При средних оборотах последнего давление должно быть не менее 2,0 кг/см2; промывать чистой водой в случае подачи пены все внутренние полости насоса и проходные каналы пеносмесителя;

открыть краники и выпустить воду из рабочей полости насоса, после чего краники закрыть.

ТО по возвращении с пожара (учения) проводится закрепленным за автомобилем водителем и личным составом караула под руководством начальника караула, в малочисленных частях — командиром отделения на посту технического обслуживания подразделения ГПС.

С наступлением холодов напорные патрубки и сливные краники насоса держать открытыми, закрывая их только при работе насоса и проверке его на «сухой» вакуум.

  • В данный момент 2.63/5
  • 1
  • 2
  • 3
  • 4
  • 5

Источник: https://nachkar.ru/referat/page2.htm

Центробежные насосы

Центробежные насосы являются самыми распространённым насосами в мире. Благодаря своей конструкции и стабильной работе этот тип насосов нашел широкое применение, как для решения бытовых задач, так и для основных технологических процессов в самых различных отраслях промышленности. В данной статье будет дано полное описание центробежных насосов, рассказано как работает центробежный насос, его классификация и основные области использования.

Принцип действия центробежного насоса

Основным элементом центробежного насоса является рабочее колесо (импеллер), расположенное внутри спирального корпуса (улитка), которое имеет лопасти, направленные в обратную сторону относительно вращению самого колеса. Импеллер устанавливается на вал, который соединен с приводом насоса. При старте работы агрегата рабочее колесо начинает вращаться, и жидкость через всасывающий патрубок поступает вдоль оси вращения колеса.

Под действием центробежной силы, жидкость перемещается по каналам между лопастями в радиальном направлении (от центра импеллера к его периферии)  в спиральную камеру корпуса насоса, а затем и в нагнетательный патрубок насоса. На периферии рабочего колеса располагается зона повышенного давления. В центре же давление понижено, что обеспечивает постоянное поступление  жидкости в насос.

Конструкция центробежных насосов

Центробежный насос состоит из следующих основных частей:

  • Всасывающий патрубок
  • Нагнетательный патрубок
  • Спиральный корпус (проточная часть насоса)
  • Рабочее колесо (импеллер)
  • Уплотнение вала
  • Картер насос

Классификация центробежных насосов

Центробежные насосы можно классифицировать по конструктивным исполнениям   его основных элементов, по типу установки  и назначению.

По расположению патрубков насосов

  • Насос «ин-лайн» типа. У данного типа насоса всасывающий и нагнетательный патрубок находятся на одной линии друг напротив друга. Перекачиваемая жидкость проходит сквозь насос. Насос устанавливается на прямых участках трубопровода.

Насос ин-лайн

    • Консольные насосы. Жидкость поступает в центр рабочего колеса (импеллера). Патрубки расположены под 90˚С относительно друг друга.

    Консольные насосы

    • Одноступенчатый насос. Насос с одним рабочим колесом на валу. Данные насосы используются при задачах, где не требуется обеспечивать высокий напор. Максимальный напор у одноступенчатых насосах обычно не превышает.Одноступенчатый насос
    • Многоступенчатый насос имеет на валу более одного последовательно соединённых колес. Такой тип насосов используется для обеспечения высокого напора при сравнительно небольшом расходе. Высокий напор создается благодаря сумме напоров, создаваемых каждым отдельным колесом. Перекачиваемая жидкость переходит последовательно от одной ступени к другой.
  • Многоступенчатый насос

    Для защиты от попадания перекачиваемой жидкости  в окружающую среду и в механическую часть центробежного насоса  используются различные уплотнительные системы. По типу применяемой системы насосы можно разделить на:

    • Центробежные насосы с сальниковым уплотнением (ссылка на сальниковое уплотнение)
    • Центробежные насосы с торцевым уплотнением (одинарным или двойным) (ссылка на торцевое уплотнение)
    • Центробежные насосы с магнитной муфтой (ссылка на магнитную муфту)
    • Центробежные насосы герметичные с мокрым ротором (ссылка на мокрый ротор)
    • Центробежные насосы с динамическим уплотнением (ссылка на динамическое уплотнение)

    По типу соединения с электродвигателем

    Центробежные насосы разделяются также по типу соединения гидравлической части насоса с электродвигателем. Выделяют типы:

    • Насос с соединительной муфтой. Упругая муфта — это элемент, позволяющий соединить вал электродвигателя и вал, на котором крепится рабочее колесо. Для этого используется, как обычная муфта, так и муфта с промежуточным элементом. Использование промежуточного элемента позволяет не отсоединять электродвигатель при  техническом обслуживании насоса, например при замене торцевого уплотнения.
      Обычная муфта Муфта с промежуточным элементом
    • Моноблочный насос. У данного типа насосов рабочее колесо крепится либо сразу на удлиненном валу электродвигателя, либо для соединения вала двигателя и насоса используется неподвижная постоянная глухая муфта.Центробежный насос с глухой муфтой Благодаря своим конструкционным возможностям назначение центробежного насоса может быть самым различным. По данному показателю выделяют следующие типы центробежных насосов:
      • Дренажные
      • Скважинные
      • Фекальные
      • Шламовые
      • Пищевые
      • Санитарные
      • Пожарные
      • Самовсасывающие

      Материальное исполнение центробежных насосов

      Центробежные насосы применяются практически во всех отраслях промышленности, перекачивают самые различные  жидкости, начиная с воды и заканчивая высоко агрессивными и абразивными суспензиями.

      Поэтому выбор материалов для основных элементов центробежных насосов очень широкий и чаще всего он основывается на стойкости данного  материала к свойствам перекачиваемой жидкости (ссылка на таблице хим. стойкости) и условиям работы самого насоса.

      Можно выделить следующие основные материалы:

      Металлическое исполнение

      • Чугун
      • Бронза
      • Углеродистая сталь
      • Нержавеющая сталь
      • Дуплекс
      • Супер-дуплекс
      • Титан
      • И.т.д

      Футерованные и пластиковые исполнения

      При работе с высоко агрессивными жидкостями, например с кислотами, металлическое исполнение не всегда может обеспечить  необходимой коррозионной защиты. Либо применения сверхстойких сплавов может привести к значительному удорожанию всей конструкции.

      Поэтому широкое распространение приобрело использования самых различных пластиков, в качестве основного материала контактирующего со средой в центробежных насосах.

      Можно выделить два основных типа:

      • Футерованные насосы. Футеровка – это процесс нанесения пластикового покрытия на металлический корпус насоса. Все элементы контактирующие с перекачиваемой средой покрыты слоем полимера, что значительно увеличивает коррозионною устойчивость всей проточной части. Современные технологии обеспечивают отличное сцепление между покрытием и корпусом, т.к при отливке полимер заполняет все полости и зазоры.
      • Пластиковые центробежные насосы. Основные элементы насоса, контактирующие со средой, выполнены из цельного пластика, обработанного на специальных станках.

      Материалы для футерованных и пластиковых насосов:

      • PP — полипропилен
      • PVDF- поливинилденефлуорид
      • PE – полиэтилен
      • PVC – поливинилхлорид
      • PFA – перфторалкоксил
      • PTFE – политетрафторэтилен
      • ETFE – этилентетрафторэтилен (Tefzel)
      • FEP – фторэтиленпропилен

      Материалы уплотнительных колец

      В качестве уплотнительных колец в центробежных насосах чаще всего используют следующие эластомеры:

      • EPDM — Этилен-пропиленовые каучук
      • NBR — Бутадиен-нитрильный каучук
      • FPM/FKM/Viton — Фторкаучук
      • FFKM — Каучук перфторированный

      Преимущества:

      • Простая конструкция
      • Немного движущихся частей, большой срок службы
      • Высокий КПД
      • Высокие показатели производительности
      • Постоянная подача, без пульсаций
      • Регулировка производительности с помощью дроссельного клапана на линии нагнетания или частотного преобразователя

      Недостатки

      • Невозможность «самовсасывания»
      • Большой риск кавитации
      • Производительность сильно зависит от напора
      • Наиболее эффективны только в одной заданной рабочей точке. При регулировании подачи с помощью частотного преобразователя эффективность понижается
      • Не может работать с мультифазными жидкостями с содержанием воздуха или газа
      • При перекачки абразивных жидкостей возможный быстрый износ основных элементов из-за высокой скорости вращения рабочего колеса (около 1500 об/мин).
      • Не может работать с высоковязкими жидкостями (макс. 150 сСт)

      Области применения

      Центробежные насосы применяются практически во всех отраслях промышленности.

      Основные из них:

      Водоснабжение и водоотведение

      Водоочистные сооружения

      Энергетика

      Нефтяная и газовая промышленность

      Химическая промышленность

      Целлюлозно-бумажная промышленность

      Горнодобывающая промышленность

      Пищевая

      Фармацевтическая

ЭТО ИНТЕРЕСНО:  Как выбрать болгарку для домашнего использования

Основные производители

Крупных игроков на рынке  центробежных насосов можно также разбить по отраслям в которых они наиболее сильны:

Водоснабжение, водоотведение, водоочистка

  • Grundfos : grundfos.com
  • Wilo :wilo.ru
  • Группа компаний Xylem. Насосы Lowara, Goulds, Flygt, Vogel и.т.д : http://xylem.ru

Источник: https://rupumps.com/nasosyi/po-tipu/dinamicheskie-nasosyi/tsentrobezhnyiy-nasos.html

Роторный насос: принцип работы пластинчатого вакуумного или масляного насоса для бочки, схема его устройства и давление в нем

Роторные насосы – это техника объемного типа, которая отличается от динамической напорной аппаратуры (центробежной, вихревой и т.д.) способом перемещения жидкостей. Для аппаратов этой категории техники характерны два варианта движения: вращательное или вращательное с возвратно-поступательным действием.

Всевозможные конструктивные варианты исполнения регулируются ГОСТом 17398—72.

Роторные насосы: классификация и принцип действия

Итак, роторные насосы делятся на две основные большие группы:

  • роторно-вращательные;
  • роторно-поступательные.

А роторно-поступательные делятся на:

  • шиберные (так называемые ротационные или пластинчато-роторные вакуумные насосы);
  • роторно-поршневые или плунжерные устройства (аксиальные и радиальные).

Кроме того, по принципу строения самого ротора насоса эта напорная техника объемного типа классифицируется как:

  • насос с мокрым ротором;
  • насос с сухим ротором.

Принципы работы роторного насоса

Главной отличительной особенностью  роторной техники стало то, что в его конструкции напрочь отсутствуют клапана. Роторно-лопастные насосы работают по принципу взаимодействия жидкости с рабочим органом в подвижных камерах, которые попеременно соединяются с всасывающими и нагнетательными полостями.

Роторный насос работает потому, что постоянно меняется объем рабочей камеры. Сначала жидкость заполняет камеру, а потом выталкивается из нее в нагнетательную область через патрубок. При этом сама рабочая камера выглядит как временно создаваемый замкнутый объем, который ограничивается деталями самого аппарата внутри корпуса.

Изменение объема рабочей камеры в зубчатой аппаратуре происходит за счет вращения шестеренок, в винтовой установке при помощи вращения винта вокруг своей оси. В пластинчато-роторных насосах за счет того, что ротор центробежного насоса с продольными прорезями, куда вставлены пластинки (шиберы) вращаются по оси, которая не совпадает с осью корпуса.

https://www.youtube.com/watch?v=AN3M7HTrpCE\u0026list=PLnU8EBsYSjkEOKyuZ8F7on_MZbC6ZRt-V

Причем в зависимости от строения ротора и количества шиберов пластинчатый насос по принципу действия может быть однократным, двукратным, трехкратным и т.д. А чтобы камера вакуумно-пластинчатого роторного насоса замыкалась, должно обеспечиваться достаточно плотное прилегание пластин к корпусу.

Роторный насос плунжерного (поршневого типа) за счет отсутствия клапанов, и, как следствие, возможности совершать обратные поступательные движения, может использоваться в качестве гидромоторов.

Достоинства и недостатки

Среди недостатков аппаратов этого типа можно выделить всего два основных:

  • повышенное требование к перекачиваемым жидкостям. Они должны быть не абразивными и неагрессивными;
  • сложность конструктивного исполнения может приводить к понижению надежности и увеличению расходов на производство и обслуживание.

Зато среди достоинств можно без сомнения выделять такие характеристики как обеспечение процесса самовсасывания без использования вспомогательных приспособлений и скорость вращения на низких оборотах, способность обратного протока жидкостей и адаптационные возможности дисков, большие уровни КПД и высоты всасывания, низкие уровни шума и вибраций, постоянный средний уровень производительности и простота исполнения механизмов.

Кроме того, насос роторный в состоянии работать с жидкостями различного показателя вязкости и температур, а также с различными включениями газа или воздуха, могут некоторое время работать в сухом режиме и обладают способностью самостоятельного дозирования.

Различные модификации напорной аппаратуры роторного типа могут выдерживать давление от 8 до 12 бар. А некоторые виды до 20 бар. И, среди всего прочего техника компактна по дизайну и габаритам, удобна в установке и обслуживании.

Серии и технические характеристики

Роторные аппараты производятся в трех модификациях, которые представлены разными серийными типами моделей: M, D, N, T.

Серия типа М – это модели с одним полым рабочим дисковым колесом, которое может работать с жидкостями средней и высокой вязкости. Эта техника не боится также наличия твердых частиц и примесей в составе перекачиваемого материала.

Аппаратура может выдерживать напор под давлением от 8 до 20 бар, со скоростью до 100 кубических метров в час, пр скорости вращения до 500 оборотов в минуту. Работает в температурном диапазоне от -20 до +280 °C.

Типы используемых фланцевых соединений: UNI PN10, ANSI 150, DIN PN 16. Кроме того, у этого типа аппаратов масса всевозможных видов уплотнения: набивное и картриджное, механическое и радиальное.

Серия типа D благодаря наличию двух импеллеров подходит для работы в трубопроводах, клапанах и фитингах. Здесь два рабочих дисковых колеса и высокая скорость потока. Поскольку оба колеса работают по очереди, создается постоянный поток жидкости и минимизируется уровень вибраций.

Серия N комплектуется одним или двумя импеллерами и опорами выносного типа. Применяются для работы с жидкостями высоких степеней вязкости и отлично справляются с перекачкой субстанций с небольшим количеством инородных примесей. При этом могут обеспечить скорость потока до 90 кубометров в час и крайне низкую пороговую пульсацию.

Серия Т может работать с напором до 4 бар при скорости потока до 3 кубических метров в час на скорости вращения в 950 оборотов в минуту. Температура жидкости может быть от 0 до +100 °C.

При этом у нее большая, чем у предыдущей серии пульсация, но серия Т хорошо справляется с перекачкой агрессивных жидкостей и обладает хорошей возможностью дозирования субстанций, которые поступают в аппарат.

НАСОСЫ ВОЗВРАТНО-ПОСТУПАТЕЛЬНОГО ДЕЙСТВИЯ

Перемещение жидкости происходит в результате осевого двиижения поршня или мембраны в цилиндре насоса, который через всасывающий и нагнетательный клапаны периодически соединяется с подводящим и напорным трубопроводами.

При увеличении рабочего объема насоса вследствие движения поршня или мембраны жидкость всасывается через всасывающий клапан или вентиль, а при обратном ходе поршня из-за уменьшения рабочего объема через нагнетательный клапан или вентиль вытесняется в напорный трубопровод.

По виду вытеснителя насосы подразделяют на поршневые и мембранные (рис. 1). 
Признаками классификации поршневых насосов могут служить:

а) способ действия поршня (рис. 2);

б) положение поршня и цилиндра (рис. 3);в) форма поршня (рис. 4);

г) вид привода (рис. 5).

Соответственно этому различают насосы простого или двойного действия, горизонтальные или вертикальные, радиальные или аксиальные, клапанные, крыльчатые, дисковые, плунжерные многоступенчатые с рычажным, кулачковым приводом или с качающимся приводным диском, а также прямодействующие.

Мембранные насосы классифицируют по расположению и колиичеству мембранных цилиндров, а также по типу привода.

РОТОРНЫЕ НАСОСЫ

Роторные насосы работают главным образом по принципу вытеснения, причем один или несколько вращающихся поршней или винтов образуют друг с другом в цилиндре насоса рабочие полости, причем размеры полости всасывания наибольшие, а наапорной полости — наименьшие; поэтому жидкость из полости всасывания и выталкивается в напорную полость. Однако некоторые роторные насосы имеют постоянные рабочие полости (объем вытеснения) как на входе, так и на выходе.

https://www.youtube.com/watch?v=GB4ifjhXr9Y\u0026list=PLnU8EBsYSjkEOKyuZ8F7on_MZbC6ZRt-V

Принципиальные различия и некоторые преимущества роторных насосов над поршневыми заключаются:

а) во вращающихся поршнях; б) в отсутствии клапанов в цилиндрах;

в) в уравновешивании масс или моментов.

По конструктивному исполнению рабочих органов все роторные насосы делят на пять основных типов, а именно: шестеренные, винтовые, коловратные, пластинчатые, роликовые. На рис. 6 приведены эти типы роторных насосов.

Шестеренные насосы (рис. 7) подразделяют в основном по числу шестерен (на двух- и многошестеренные), по типу зацепления (с наружным и внутренним зацеплением) и по числу потоков жидкости (на одно- и многопоточные насосы).

Как видно по рисункам, жидкость, попадая в межзубчатые пространства зубчатых колес, перемещается от входной к напорной полости насоса. Взаимное зацепление зубьев, а также малые радиальные и торцовые зазоры между шестернями и корпусом уменьшают протечки перекачиваемой жидкости.

Винтовые насосы подразделяют в основном по количеству рабочих органов на одно- и многовинтовые, а по направлению потока жидкости на одно- и двухпоточные винтовые (рис. 8). В противоположность шестеренным насосам процесс перемещения жидкости в винтовых насосах происходит в осевом направлении по свободным межвинтовым полостям от стороны всасывания к напорной стороне.

Коловратные насосы выпускают в настоящее время самых различных конструкций. Для конструкции этого вида xapaктерны так называемые двухвальные насосы с одно- или многоопрофильными роторами различной формы поперечного сечения (рис. 9). Почти все коловратные насосы перемещают перекачиваемую жидкость от стороны всасывания к напорной стороне без изменения объема полости вытеснения.

Пластинчатые насосы — типичные представители одновальных насосов, по принципу действия подразделяют на простого и двойного действия (рис. 10), а по виду ротора на одно- и многоопластинчатые насосы (шиберные).

Рабочий процесс этих типов характеризуется изменяющимся (серповидным) рабочим объемом полостей всасывания и напора. Уплотнение между входным и напорным патрубками осуществляется плоскими пластинами или лопатками, помещенными в пазах ротора, при минимальных радиальных и торцовых зазоорах между ротором и корпусом.

Роликовые насосы подразделяют только по принципу действия на одно- и двукратного действия (рис. 11). В данном случае эффект нагнетания обусловливается вращающимися поршнями, эксцентрично расположенными в корпусе, которые приводят эластичную оболочку в колебательное движение и перемещают жидкость вследствие быстрого изменения (пропорционально частоте вращения) рабочего объема полостей всасывания и напора.

ДИНАМИЧЕСКИЕ НАСОСЫ

В отличие от поршневых и роторных эти насосы работают по динамическому принципу. В результате вращения рабочих колес внутри рабочего пространства насоса кинетическая энергия от рабочего колеса передается перекачиваемой жидкости, которая в последующих элементах (диффузоре, направляющем аппарате, спирали) в большей части преобразуется в энергию давления.

По принципу действия насосы прежде всего подразделяют на лопастные и вихревые (рис. 12). Если лопастной насос не обладает, как правило, свойством самовсасывания, то вихревой — обычно работает по принципу самовсасывания. Кроме того в вихревых насосах в подавляющей степени происходит непрямой обмен энергии между вторичным потоком жидкости, находящейся в рабочем колесе, и перекачиваемой жидкостью в боковом канале корпуса насоса.

Лопастные насосы подразделяют:
по направлению потока на выходе из рабочего колеса — на центробежные насосы радиального, диагонального типов и на осевые (рис. 13); по прохожденио жидкости за рабочим колесом — с направляяющим аппаратом, спиральным или кольцевым отводом;

по направлению потока жидкости в рабочем колесе или между рабочими колесами — на одно- и двухпоточные (рис. 14).

В многооступенчатых насосах применяют одностороннее или симметричное расположение рабочих колес (рис. 15).

В заключение следует еще указать на деление, или классифиикацию, насосов по всасывающей способности:

самовсасывающие, частично самовсасывающие (с предвключенными ступенями всасыывания или всасывающими устройствами) и не самовсасывающие.

Вихревые насосы по форме рабочего колеса можно классифиицировать на открытые (звездообразные), закрытые (с периферийнообоковым каналом) и чисто вихревые (рис. 16), а по прохождению потока на одно- и многоступенчатые насосы.

СПЕЦИАЛЬНЫЕ НАСОСЫ

К этой группе относятся прежде всего небольшие насосы, которыe по классическим признакам (наличие вращающегося или перемещающегося вдоль оси рабочего органа) нельзя отнести к обычным насосам.

Струйные насосы (рис. 17) характеризуются наличием трубы Вентури, в центр которой подводится струя рабочей среды (вода, пар или газ).

Рабочая струя образует пограничный слой и вследствие высокой скорости вначале захватывает частички окружающего воздуха, а затем вследствие обменных процессов всасывает перекачиваеемую жидкость из подводящего трубопровода.

Пневматические насосы (газлифты) подают жидкость в результате образования водовоздушной смеси малой плотности при поступлении воздуха под давлением в зааглубленную под уровень жидкости трубу. Окружающая жидкость большей плотности проникает во всасывающую трубу, обеспечивая тем самым процесс подъема жидкости (рис. 18).

Электромагнитный насос (рис. 19), предназначенный главным образом для перекачивания жидкого металла, создает по так называемому правилу правой руки осевую силу в перекачиваемой жидкости, которую можно рассматривать в качестве движущегося проводника в магнитном поле. Вследствие этого создаются услоовия для перемещения жидкости.

КЛАССИФИКАЦИЯ ПО ВИДУ ПЕРЕКАЧИВАЕМОЙ СРЕДЫ

От физических и химических свойств перекачиваемой среды неизбежно зависят конструкции насоса, принцип его работы, а также выбор материала. На этом основании вид перекачиваемой среды пелесообразно принять в качестве второго признака для классификации насосов.

Поэтому определены шесть типичных перекачиваемых сред для насосов.

В соответствии с этим насосы предназначены для чистых и слегка загрязненных жидкостей, загрязненных жидкостей и взвесей, легко загазованных жидкостей, газожидкостных смесей, агресссивных жидкостей, жидких металлов.

КЛАССИФИКАЦИЯ ПО НАЗНАЧЕНИЮ

На практике довольно часто встречаются насосы разных типов, названия которым даны в зависимости от особенностей их эксплуатации. Так, например, различают питательные, циркуляционные, конденсатные насосы, если речь идет о насосах для тепловых электростанций.

К циркуляционным или насосам охлаждения относятся насосы, которые, как правило, работают в замкнутых системах. Под реакторными насосами подразумевают в настоящее время главные циркуляционные насосы, которые включены в первичный контур реактора атомной электростанции.

Судовые центробежные или поршневые трюмные насосы используют в судостроении.

В погружных насосах или насосах с мокрым или защищенным электродвигателем, последний размещают в перекачиваемой среде. Общеизвестные гидравлические насосы, относящиеся к этим типам и устанавливаемые в гидравлические системы, являются не только подающими машинами, но и источниками напорного потока жидкости.

Классификацию по назначению следует применять лишь в том случае, когда недостаточно первых двух признаков (классификация по принципу действия и по перекачиваемой среде) для четкой характеристики определенного типа насоса.

Перепечатка материала возможна только с активной ссылкой на electronpo.ru, как на источник первой информации.

Быстрый переход — | Асинхронный двигатель | Насос К65-50-160| Электродвигатель АИР355S6 У3| Цена консольных насосов | Электродвигатели цена |

Источник: http://electronpo.ru/info

Классификация насосов по принципу действия, устройству и среде

Классификация насосов вследствие огромного разнообразия конструкций, областей использования, материалов и много другого является очень трудоёмкой задачей.

А если учитывать всё большее количество появляющихся с каждым днем моделей, то единая всеобъемлющая таблица, в которой будут указаны виды насосов и их классификация не представляется возможным.

Сам насос — это гидравлическая машина, которая преобразует механическую энергию приводного двигателя (например вращение электродвигателя) в энергию потока жидкости, которая необходима для перемещения жидкости и создания напора.

На практике оборудование разделяется по наиболее важным признакам.

Классификация насосов по принципу действия

Насосы по принципу действия можно разбить на две группы:
  объемные;
  динамические.

ЭТО ИНТЕРЕСНО:  Как сделать краскопульт своими руками для покраски

Объемный тип.

В насосах объемного типа определенный объем перекачиваемой жидкости отсекается и перемещается от входного патрубка насоса к напорному, при этом жидкости сообщается дополнительная энергия, главным образом в виде энергии давления.

Насосы объемного типа подразделяются на две подгруппы:
  возвратно-поступательного действия;
  роторные.

В возвратно-поступательных насосах перемещение жидкости достигается за счет осевого перемещения поршня или диафрагмы в цилиндре насоса.

Цилиндр насоса с помощью клапанов попеременно соединяется с подводящим и напорным трубопроводом. Основным недостатком возвратно-поступательных насосов является неравномерность (так называемая пульсация) подачи.

Для выравнивания подачи насосы выполняют многопоршневыми и применяют воздушные колпаки.

Насосы возвратно-поступательного действия можно классифицировать по следующим признакам:
  способу действия поршня-одностороннего или двустороннего действия;
  положению поршня и цилиндра – горизонтальные и вертикальные;
  форме поршня – дисковые, плунжерные.

Роторные насосы.

В роторных насосах один или несколько вращающихся роторов образуют в корпусе насоса полости, которые захватывают перекачиваемую жидкость и перемещают её от входного патрубка насоса к напорному.

Роторные насосы обеспечивают более равномерную подачу, в них отсутствует отсекающая клапанная система.

Наибольшее распространение получили такие конструктивные схемы роторных насосов как:
  шестеренные – двух и многошестеренные, с наружным и внутренним зацеплением;
  винтовые – одно и многовинтовые;
  пластинчатые – одно и многопластинчатые.

Динамические насосы.

В динамических насосах приращение энергии происходит в результате взаимодействия потока жидкости с вращающимся рабочим органом. Принято подразделять такие агрегаты на две основные группы:
  лопастные;
  вихревые.

В лопастных насосах жидкость получает приращение энергии за счет взаимодействия с вращающейся решеткой лопастей рабочего колеса. В рабочем колесе происходит приращение потенциальной и кинетической энергии жидкости.

Кинетическая энергия в неподвижных элементах насоса (таких как отводы) превращается в энергию давления.

Обычно лопастные насосы не обладают свойством самовсасывания. Для запуска в работу необходимо будет заполнить их водой (или другой перекачиваемой жидкостью).

В вихревых насосах приращение энергии перекачиваемой жидкости осуществляется за счет турбулентного обмена энергией основного потока в канале насоса и вторичного потока в рабочем колесе.

В промышленности большее распространение получили лопастные насосы, которые по направлению потока в рабочем колесе подразделяются на центробежные( радиальные и диагональные) и осевые.

В зависимости от соотношения параметров (таких как напор, расход и число оборотов) изменяется форма проточной полости насоса, в частности рабочего колеса.

Классификация центробежных насосов по свойствам перекачиваемой жидкости

От физико-химических свойств перекачиваемой жидкости зависит конструктивное исполнение и применяемые материалы в насосах. По этому признаку насосы делятся на следующие группы:
  для чистых и слегка загрязненных нейтральных жидкостей;
  для загрязненных жидкостей и взвесей;
  для агрессивных и радиоактивных жидкостей;
  для жидких металлов;
  для эрозирующих жидкостей и твердых веществ.

В зависимости от перекачиваемой жидкости насосы подразделяются на:
  холодные – перекачивающие среду с температурой не более 100 0С;
  горячие – перекачивающие среду с температурой более 100 0С.

Классификация по назначению

Один и тот же тип насосов может эксплуатироваться в различных технологических процессах – это основной принцип классификации по назначению.

Одним из примеров такой классификации центробежных насосов может служит разделение оборудования по группам на крупных промышленных объектах, например на электростанциях.

На электростанции принято подразделять оборудование на две группы:
  насосы тепловой схемы;
  вспомогательные агрегаты.

К первой группе относятся:
  питательные насосы – они обеспечивают подачу питательной воды в котел при высокой температуре и давлении;
  конденсатные – такие агрегаты необходимы для откачивания конденсата из конденсатора и подачи его к питательным насосам;
  циркуляционные – используются для поддержания циркуляции в паровых котлах ТЭС и главных циркуляционных насосах;
  сетевые насосы – обеспечивают работу теплофикационным сетям и подают воду с высокой температурой в отопительные системы здания;
  насосы системы охлаждения – подают большое количество холодной воды для охлаждения конденсаторов и другого оборудования.

К группе вспомогательных относятся агрегаты систем химводоочистки, маслоснабжения и регулирования, насосы для уплотнений и т.п.

Классификация пожарных насосов

Классификация центробежных пожарных насосов характеризуется набором основных параметров агрегата, таким как напор, подача, коэффициент полезного действия, высота всасывания и мощность.

Основным требованием к пожарному агрегату является высота подачи воды под давлением. Напор насоса системы пожаротушения зависит от устройства оборудования, а именно от количества рабочих колес.

Модели с одним рабочим колесом принято называть одноступенчатыми, с двумя и более – многоступенчатыми. Чем больше рабочих колес в агрегате – тем на большую высоту он способен поднять воду.

При установке системы пожаротушения в здании следует учитывать и то, что периодически потребуется проводить профилактические работы по проверке работоспособности, для того, что в случае необходимости оборудования выполнило свои функции.

Устройство и классификация насосов

Этот вид классификации чем то похож на первый. К примеру, для насосов объемного типа классификация по устройству выглядит следующим образом:
  вальный, кривошипный, кулачковый насос;
  одно, двух, трех и многопоршневой насос;
  оппозитный, V-образный;
  одно, двух и многорядный.

Устройство вихревых насосов в большинстве случаев выполняются одноступенчатыми, консольного типа.

В дополнение к статье «Классификация насосов по принципу действия, устройству и среде.» Вам может быть интересно:

Источник: https://www.nektonnasos.ru/article/ustrojstvo/klassifikaciya-nasosov/

Центробежные насосы устройство и принцип действия

Центробежные насосы –  одни из наиболее распространенных машин промышленности. По количеству они уступают только электрическим двигателям. Т.к. электрические двигатели используются для приведения в действие насосов, то, можно сказать, что львиная доля электроэнергии мира расходуется на транспортировку жидкости центробежными насосами.

Центробежные насосы получили своё название от способа, в котором жидкость передаётся энергии.

Когда жидкость подводится к насосу, она соприкасается с вращающимся колесом и выталкивается в напорный патрубок с центробежной силой через полость специальной формы, называемой спиральным кожухом. Все центробежные насосы работают по такому принципу, но среди них могут быть конструктивные различия.

Насос передает кинетическую энергию жидкости. Кинетическая энергия подразумевает скорость жидкости. Скорость – это всего лишь половина уравнения.

Рис.1 – Центробежный насос

Жидкость входит в насос по центру колеса через всасывающее отверстие. Трение между частицами жидкости и рабочим колесом заставляет жидкость вращаться. Например, как трение между дорогой и резиной шины заставляет машину двигаться.

Рабочее колесо тянет частички жидкости, поэтому они вращаются при контакте с ними. Жидкость выталкивается наружу колеса с помощью центробежной силы – явление, которое выталкивает прочь любой объект из центра круга к его границам. Вот так жидкость получает кинетическую энергию от колеса.

Поэтому эти насосы называются центробежными.

Количество энергии, передаваемое жидкости зависит от трех факторов: 

  • плотности жидкости:
  • частоты вращения рабочего колеса:
  • диаметра рабочего колеса:

После рабочего колеса жидкость попадает в полость спирального корпуса, откуда попадает в напорный патрубок.

Давление. Насос также должен создавать избыточное давление, чтобы отвечать требованиям системы. Обычно это преодоление гравитации при подъёме жидкости из низшего уровня на высший, и сопротивление трения трубопроводов.

Проще говоря, давление – это возможность выполнить задание. А скорость жидкости – это то, как скоро оно будет выполнено.

Насосы должны превращать динамическое давление в статическое.

По мере прохождения жидкости по спиральному корпусу она замедляется, так как площадь прохода увеличивается, потому что производительность или количество жидкости, перекачиваемое за какое-то время, зависит от двух факторов: первое – это скорость жидкости, второе – размеры полости, через которую она продвигается.

Если поток постоянный, то увеличение проходного сечения ведёт к уменьшению скорости и росту давления. Достигая напорного патрубка, большая часть кинетической энергии превращается в давление. 

Кстати, прочтите эту статью тоже:  ТурбовоздуходувкиЕсли скорость падает, то увеличивается давление.

Конструкция

Насос – это машина, которая превращает механическую энергию в кинетическую энергию, перекачиваемую жидкость с электро-транспортировки ее из одной точки в другую.

Центробежный насос состоит из двух основных компонентов.

  1. Первый – это вращающийся диск с изогнутыми лопастями. Он называется рабочим колесом.
  2. Второй – это труба специальной формы, называемая спиральным корпусом, в котором содержится рабочее колесо и транспортная жидкость.

Есть 5 элементов конструкции, которые могут различаться:

  • вид колеса;
  • вид подшипника;
  • расположение корпуса;
  • крепление двигателя;
  • число ступеней.

Корпус

Он сделан в форме спирали с уменьшающимся радиусом, похожим на раковину улитки.Полость этого корпуса не остается одной и той же везде. Площадь проходного сечения увеличивается при приближении к напорному патрубку.

Там, где заканчивается спиральный корпус и начинается напорный патрубок, есть выступающий клин, называемый водорезом.

Он физически разделяет спиральный корпус и напорный патрубок и гарантирует, что жидкость будет покидать насос, а не просто крутиться по кругу в спиральном корпусе.

Расширяющаяся часть спирального корпуса очень важна, т. к. с помощью неё насос создает давление.

Рабочее колесо

Есть 3 вида рабочих колёс:

  • открытые,
  • полузакрытые
  • закрытые

Самая простая конструкция у открытого колеса, которая состоит из острых, как лезвие, лопастей, равномерно расположенных на втулке.

Открытое колесо

Большой неограниченный подвод жидкости позволяет этому виду колес транспортировать жидкости содержащие грязь, пыль, осадки, твёрдые примеси, что делает их идеальными для мусорных насосов.

Применяется на водоочистных заводах, где перекачиваются сточные воды для обработки грубых шламов с твердыми примесями. Поэтому он имеет режущие лопатки спереди колеса, чтобы резать очень большие примеси.

Если лопасти размещены на задней пластине, то такое колесо называется полузакрытым.

Полузакрытое колесо

Если лопасти находятся между двумя пластинами, то оно называется закрытым.

Закрытое колесо

Закрытые колеса более эффективны, чем полузакрытые и открытые колеса. Потому что поток жидкости идет по строго заданному пути. Значит, больше жидкости выходит из насоса и меньше просто циркулирует внутри колеса.

Их недостаток это то, что они могут легко загрязниться мусором.

Очень популярное заблуждение, будто закрученные лопасти помогают толкать жидкость. Но на самом деле это не то, для чего они предназначены.

Назначение лопаток – это проводить жидкость по наиболее плавному пути. Закрученные назад лопасти помогают стабилизировать условия течения жидкости на высоких скоростях и уменьшить нагрузку на двигатель.

Кстати, прочтите эту статью тоже:  Центробежный насос одноступенчатый

Правильное направление вращения для этого колеса – противочасовое. Поэтому по направлению сгибов лопастей можно сказать направление движения колеса.

Вал и подшипники

Какой бы вид колеса  не применялся, он закреплен на вращающемся валу. Вал должен быть закреплен в корпусе подшипниками одним из 2 способов:

Консольное закрепление

При консольном укреплении вала, рабочее колесо закреплено на одном конце, а подшипники на другом.

Такая конструкция располагает всасывающее и напорное отверстие перпендикулярно друг другу, а всасывающее отверстие – прямо перед центром колеса.

Такие насосы называются насосы с торцевым всасыванием. Они широко распространены из-за своей дешевизны и простоты производства, но они имеют один недостаток, связанный с путём движения жидкости.

Во время работы насоса, создается зона с низким давлением во всасывающем отверстии.

Есть зона повышенного давления на выходе из колеса, из которого жидкость, получившая энергию, попадает в спиральный кожух.

Жидкость течет к задней пластине в открытых и полуоткрытых колесах, что полностью разрушает баланс  давлений. В результате возникает осевая сила или нагрузка – выталкивающая колесо к всасывающему отверстию.

Это можно компенсировать, устанавливая сильные подшипники или просверлив дырки в пластине колеса для выравнивания давлений. Но это не эффективные способы.

Симметричное крепление

Более действенное решение – расположение вала на подшипниках с двух сторон. Это называется симметричной конструкцией.

Поддержку вала улучшает не только расположения подшипников с двух сторон, но и возможность использовать симметрические закрытые колеса с двойным всасыванием.

Поскольку есть такие же зоны с высоким и низким давлением на обеих сторонах колеса, это успешно устраняет нагрузочные силы, благодаря балансу давлений. Так же эта конструкция имеет иное преимущество. Всасывающее и напорное отверстия расположены параллельно друг другу на противоположных сторонах насоса, и корпус разделён по оси.

Просто открутив болты и сняв крышку, обслуживающий техник может добраться до вращающейся части насоса внутри него без извлечения всего насоса из системы.

Благодаря раздельной осевой конструкции, насосы в симметричном расположении подшипников называют насосами с разборным корпусом.

Всё это, конечно же, очень весомые причины для того чтобы установить в своей шахте такой насос прямо сейчас. Но есть некоторые недостатки. Потому что обслуживающие операции и требования к уплотнению более сложные для насосов с разборным корпусом, чем для насосов с торцевым всасыванием. Они так же более дорогие.

Кстати, прочтите эту статью тоже:  Шиберные насосы компании Blackmer

Расположение вала

Центробежные насосы обычно расположены горизонтально. Но иногда вертикально.  

Вертикальные насосы применяются для уменьшения места под установку. Вы можете встретить их на дне скважины или колодца, соединенными длинным-длинным валом с двигателем сверху. Это подводит нас к соединению с двигателем. Обычно электрического.

Тип присоединения вала

Есть 2 способа предать вращения от двигателя к насосу: через муфту или напрямую.

Если насос и двигатель – это две отдельные машины, то они должны быть соединены муфтой.

Соединение муфтой

Муфты бывают разных форм, размеров и исполнений. И одно общее требование к ним – обеспечение правильной целостности валов, иначе без них обеспечение целостности было бы очень изощренным процессом.

Для облегчения и поддержания целостности, двигатель и насос установлены на общей опоре – опорной плите.

Или, в случае с вертикальными установками, двигатель расположен на раме.

Такой вид соединения двигателя и насоса называется муфтовым. Для больших мощных установок и насосов с разборным корпусом соединение через муфту единственно возможное.

Второй способ соединения – прямой. Двигатель и насос находятся на общем валу  с колесом, расположенном консольно на другой стороне вала двигателя. В этом случае установка не требует муфты или сложных процедур по поддержанию целостности.

Тем не менее, из-за того, что двигатель и насос расположены на одном валу, поддерживаемые лишь подшипниками двигателя, этот способ подходит только для маленьких и средних насосов с торцевым всасыванием.

Количество ступеней

Насос классифицируется по количеству ступеней, которое он имеет. Большинство насосов имеет одну ступень с одним рабочим колесом и одним спиральным кожухом. Тем не менее, некоторые насосы имеют дополнительные ступени, соединённые последовательно для увеличения давления.

Ротор многоступенчатого насоса

Суть в том, что одно колесо придает энергию жидкости, а затем направляет его в следующее колесо, которое добавляет еще энергии жидкости, а затем направляет ее к следующему колесу, и так далее, пока, в конце концов, жидкость не попадает в напорный патрубок.

Источник: https://pronpz.ru/nasosy/centrobezhnye.html

Понравилась статья? Поделиться с друзьями:
Тех-обзор
Почему ноутбук не видит флешку

Закрыть